F. Some Comments on the Discrepency
Problems of Chapter 17

The purpose of this appendix it to bring forward some features of one of the
major open problems in this book, namely Problem 17.2.2. The thoughts I
will present occurred to me too late to be included in the printed version
of the book. I would also like to make the structure of this problem clearer,
since, as it is stated now it is necessary to have studied in detail Section 17.2.
to have a chance to make sense of it.

e The link between matching theorems and discrepency theorems is ex-
plained in detail in Chapter 4.

e When studying matchings of a random i.i.d. sample of N points in [0, 1]?
(with evenly distributed points), we are typically not interested in what
happens at a scale less than 1/ VN1 so it is natural to replace the underlying
probability space [0,1]Y by a discrete version G = {1,...,2P}2, say with
the uniform probability pu.

e The heart of the problem is then to study the size of certain classes of
functions H on G (as subsets of L2(G,du))

Consider a > 0 and the function ¢, (x) = |z|(log(2 + |z|))®. Consider the
class Hg,p of functions h on G which satisfy the following conditions. First,
h is “0 on the boundary of G”:

(k,0) e G, ke{l,2°} = h(k,1) =0
(k,0)e G, £e{1,2°} = h(k,1)=0.

Next
> a(h(k+1,6) = h(k.£)) < 2% . (F.1)
k.l

Here of course the summation isover 1 < k <2P —1 and 1 < /¢ < 2P, Also
> u(h(k, £+ 1) — h(k, ) < 2%, (F.2)
k.0

where the summation isover 1 <k <2P and 1 </ <2P — 1.
Research problem F.0.1. What is the order of vo(#(a,b))??

! or even \/Iog N/v'N, etc. but the problem we will raise is not sensitive to that.
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let me now explain the point of this problem. Consider the much smaller
class Hryip of functions that are 0 on the boundary of G and satisfy |h(k +
L, £)—=hk,0)| < Land |h(k,£+1)—h(k,£)| < 1. Then the essence of Section 4.6
is to prove that vo(Hrip) > /p2??/L. Consequently

1
Yo (Hap) > Z\/TJQQ’” .
I believe? that if one could show that

Y2(Ho.1/2) < Ly/p2% (F.3)

one could prove Conjecture 17.1.4. T have never written down the argument
in detail (so please do not embarrass me by asking) but the path should be
as follows. First prove a suitable version of Theorem 17.2.1, where the class
H there is replaced by the class H 1 /2, using that v2(Ho,1/2) < L,/p2*" and
Theorem 4.5.13. Then use the method sexplained in [169] Section 3.5.

It is a highly non-trivial fact that v2(Ho5) is of a larger order than \/1_9227’
for b < 1/2. The reason for this is that Theorem 4.5.13 fails for o > 2
for otherwise with high probability we would get a matching = for which
sup;<y [ X} — Y| < K(log N)Y/2+1/eN=1/2 and sup,cy [X? — Vil <
K+/Tog NN~1/2. Such a matching does not exist, basically for the same reason
that the Leighton-Shor matching theorem is sharp (one cannot do better than
the exponent 3/4 there) and a tree witnessing that v2(Ho ) is of larger order
than \/1_3221” can be constructed using the ideas of the lower bound of the
Leighton-Shor matching theorem.

I write this appendix because I sort of outsmarted myself. I designed a
“dimension independent way” to get the factors v/log N occurring in match-
ing theorems by introducing the functionals v, g of (4.5). It then follows from
Lemma 4.1.3 that for a class H of functions on G we have

Y2(H) < Ly/praa(H) - (F.4)

This is basically obtained by applying the Cauchy-Schwarz inequality, and
this result is sharp when in the application of the Cauchy-Schwarz inequality
we are basically in the case of equality. A typical application of this result is
to the case H = Hyip because vz 2(Hrip) < L2?P. (This last claim being a
discrete version of Lemma 4.5.9.)

I plan to explain the following (a weaker fact is claimed in [153]):

Proposition F.0.2. If vo2(Hap) < L2% then a+b > 1.

This does not contradict (F.3) because we are not at all in the situation where
the use of the Cauchy-Schwarz inequality in (F.4) would be sharp and this
inequality cannot be reversed.

2 A similar claim is made right after (17.18).
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Before proving Proposition F.0.2, I will first prove a “continuous version”
of it. Let us fix a, b > 0 and consider the class H, ; of functions on [0, 1] which
satisty [ q(h)dp <1 and [ @p(h)dp < 1, and are zero on the boundary of
[0,1)%.

Proposition F.0.3. If yo.2(Ha) < 0o then a +b > 1.

Proof. First, for any set H is a Hilbert space we have sup,, 2"/%e,(H) <
Lz 2(#H). This is a variation on (2.57). Assuming that @ +b < 1 we will
prove that then
sup 2n/2en(ﬁa,b) =00, (F5)
n

and this will prove that y2.2(Ha ) = 00.

Given a number 0 < u < 1 consider the function f,, on [0, 1] such that
fuluw) = 1, fu,(0) = 0, fu(x) = 0 for z > 2u and f, piece wise afine.
Consider the function gy, = fu, ® fi for 0 < u,v < 1 so that ||gy.v|l2 is
about \/uv, where the norm is in L?([0,1]?). Considering ¢ > 0 the quan-
tity [ pa(0zcgun)dp is about uv x ¢/ulog(2 + ¢/u)*=cvlog(2 + ¢/u)* and
[ 6(9ycgu.v)dp about culog(2 + ¢/v)b. For ¢ large, both these quantities
are about 1 for v = 1/(clog(2 + ¢)?) and u = 1/(clog(2 + ¢)?). Thus the
function cg, , is of L? norm about cy/uv= 1/(log(2 4 1/¢))(@+*)/2). Now the
function cg, , is supported by the rectangle [0, 2u] x [0, 2v], and we can find
about 1/(uv) > ¢? disjoint translates of this rectangle in the unit square.
That means that in we can find at least ¢? points in ﬁa,b which are at
mutual distance > 1//(log(2 + ¢))(@+?)/2). Taking ¢ = N,, this shows that
en(Hap) > 27M@0/2 /1 50 that 27/2e,(H) > 27@+0=1/2 /[, and we have
proved (F.5). O

A good problem is the converse of Proposition F.0.3. Is it true that
Yo.2(Hap) < 00 when a +b > 173

Proof of Proposition F.0.2. One proves that for n such that 2™ < p/L one
has
22, (Hyyp) > 22P2~nlatb=1/2 /1 (F.6)

by a “discrete version” of the previous construction. a

One should note that for a = b= 0 (F.6) yields 2"¢,,(Ho0) > 22P2"/2 /L,
and since this holds for 2 > p/L this does not disprove (F.3).

Moral of this appendix: To attack the remaining matching prob-
lems, use v and not ;5.

3 The conjecture that this holds whenever a + b > 1/2 stated in page 194 of [153]
was certainly too hasty!!






. Solutions of Selected Exercises.

As the purpose of the exercises is to have the reader (rather than the author)
work, the solutions are sketchy, and have not been worked out with the same
dedication as the rest of this book. Therefore expect much lousiness and some
plain nonsense.

Exercise 1.3.1 Considering for each (s,t) the largest k with d(s,t) < 27F
yields

Xy — X4|P )
sup —| 5 ﬁt| < LZ sup 2kﬁ|Xs - Xt|p .
s,teG d(57t) E>0 s,teEG;d(s,t) <2k

Since Esup, yeqias,p<a—+ [Xs — Xel? < K(m,p, @)2F(m=2) by (1.10) taking
expectation yields (1.12) since 8 +m — a < 0.

Exercise 1.3.2 By Jensen’s inequality we have p(Emax; V;) < Ep(max; V;).
Furthermore ¢(max; V;) < >, ¢(V;), so that Ep(max; Vi) < >, Ep(V;).

Exercise 1.3.3 It follows from (1.13) and (1.14) that the r.v. Y, of (1.5)
satisfies EY,, /¢, < ¢~ (K (m)2"™d,), and (1.15) follows by combining with
(1.7).

Exercise 1.4.3 The distance d associated to Brownian motion is given by
d(s,t) = /|s —t| and N([0,1],d,€) < Le~2. The condition |s —t| < § implies

d(s,t) < /5. Dudley’s bound is then Lfo\/5 Vl0og (L/e?)de < Ly/§1og(2/9).

Exercise 2.2.2 Just use that |X;| <[|X; — X, | 4 | Xy, | < sup [Xs — Xo| +
|Xt0|‘

Exercise 2.3.1 Because P(Y > aEY') < 1/a by Markov’s inequality.

Exercise 2.3.3 (a) This means that given L; > 0 there exists Ly such that
sup, ry — L1x® < 43/2/Ly, which is proved by computing this supremum.
(b) Let us then assume that p(u) < Ljexp(—u?/L;) for u > L;. Given a
parameter A, for Au > L; we have p(Au) < Ljexp(—A2?u?/L;). Also, we
have p(Au) < 1, so that p(Au) < 2exp(—u?) for u < /log2. Assuming
that Ay/log2 > Ly, it suffices that Ly exp(—A%u?/L,) < 2exp(—u?) for u >
Vlog 2. This is true as soon as Li < 2exp(u?(A/L; — 1)) for u > y/log2 and
in particular as soon as A is large enough that Ly < 2exp(log2(A?/Ly — 1)).
(c) Taking logarithms, it suffices to prove that for £ > 0 and a constant L



